Technical Selection

\qquad

Trapezoidal displacement outlet VA-T.... Semi-trapezoidal displacement outlet VA-TH....

Preliminary remarks

Where workplaces or production facilities have to be kept free of airborne dust and fibres or heavy pollutants, the supply air is best discharged above the occupied zone and the return air extracted from the floor zone. The dust and pollutants are displaced downwards with the indoor air to the return air openings. As far as possible, return flows to the ceiling have to be avoided.
This is where air outlets for low-turbulence air flow are used, whose discharge direction has a broad spread with a horizontal to vertically downward incline.

For these applications KRANTZ KOMPONENTEN provides the trapezoidal and semi-trapezoidal displacement outlets.
While the trapezoidal displacement outlet is best installed above a production area - either flush with the ceiling or free-hanging - the semi-trapezoidal displacement outlet is used where the supply air is to be discharged from the side, e.g. from a room wall or a row of pillars. The outlet placement is also possible on either side of an assembly line, e.g. in car works, or along production machines, e.g. in printing shops.

Construction design

1. Trapezoidal displacement outlet

The trapezoidal displacement outlet is basically manufactured in three widths: 140,290 and 500 mm , and in several lengths. Its main components are the housing 1 with trapezoidal inner and outer perforated plates 2 and the connection spigot 3.

Built into the connection spigot is a volume flow damper 4 which can be adjusted from outside using a setting screw/ slide 5 . The \oplus sign stands for higher volume flow rate, the Θ sign for lower volume flow rate.
The trapezoidal displacement outlet is installed lengthwise below the supply air duct. For the outlet widths of 290 and 500 mm , an insertion frame 6 is additionally required to connect the outlet to the supply air duct; this additional frame will be put onto the inside of the duct bottom. The connection frame, the duct bottom and the air outlet will be riveted together. The connection spigot of the 140 mm wide outlet is fitted with a flange 7 that can be screwed to the duct bottom from below. The two connection options are shown in Fig. 1, Details I and II.
The perforated plate of the housing can be pulled down for cleaning purposes after releasing a lock 8.

Nominal width 140

Detail I

Nominal width	Nominal length	Volume flow rate range ${ }^{1)}$		Weight	Key for all pages: 1 Housing 2 Perforated plate
$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	mm	$\begin{aligned} & \dot{\mathrm{V}}_{\mathrm{A}} \\ & \mathrm{l} / \mathrm{s} \end{aligned}$	$\begin{gathered} \dot{V}_{A} \\ \mathrm{~m}^{3} / \mathrm{h} \end{gathered}$	approx. kg	3 Connection spigot 4 Volume flow damper 5 Setting screw/slide
	800	70-165	250-600	6	Insertion frame
	1250	110-265	400-950	8	8 Housing lock
	1600	140-330	500-1200	11	9 Twist outlet
	1800	165-390	600-1400	13	10 Suspension s
1) Maxim screw	$\begin{aligned} & \text { n flow } \\ & \text { de } \\ & \text { is } \end{aligned}$	when the ri	setting View A		12 Hinge

Nominal widths 290 and 500

Detail II
Cutout in duct
bottom $202 \times(L+2)$

Nominal width	Nominal length	Volume flow rate range		Dimensions							Twist outlets units	Position²) of \dot{V} damper W in mm		Weight approx. kg
$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \dot{V}_{\mathrm{A}} \\ & \mathrm{I} / \mathrm{s} \end{aligned}$	$\begin{aligned} & \dot{V}_{A} \\ & \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	$\begin{gathered} \mathrm{B}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L} 2 \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{H}_{3} \\ \mathrm{~mm} \end{gathered}$		open	closed	
290	800	155-330	550-1200			804	834				2	41	19	15
	1250	235-530	850-1900			1254	1284				3	28	6	22
	1600	300-670	1100-2400	200	234	1604	1634	235	100	25	3	38	16	27
	1800	350-750	1250-2700			1804	1834				4	45	22	31
500	800	265-550	950-2000			804	834				2	41	19	24
	1250	415-830	1500-3000	200	234	1254	1284	350	120	30	3	28	6	34
	1600	540-1100	1950-4000	20	234	1604	1634	350		3	3	38	16	42
	1800	610-1220	2200-4400			1804	1834				4	45	22	47

2) Related to setting screw/slide 5 being on the left in View A

Design with rectangular connection spigot

Section A - A: Smooth connection spigot at the top

at the rear

Insertion frame for connection to supply air duct

Connection frame to fit 20 mm corner flanges (optional)

Section B - B: Spigot for connection to circular duct at the top at the rear

2. Semi-trapezoidal displacement outlet

Its main components are the same as those of the trapezoidal displacement outlet, yet with different geometric shapes. The semi-trapezoidal displacement outlet is available in sizes (widths) of 250 and 500 mm and in several lengths. It can be fitted with one rectangular or two circular connection spigots placed at the top or at the rear (see Figure 8).

The semi-trapezoidal displacement outlet is supplied as standard with a fixed damper.

Size	Nominal length	Volume flow rate range		Dimensions				Twist outlets units	$\begin{array}{c\|} \text { Weight } \\ \text { ap- } \\ \text { prox. } \\ \mathrm{kg} \\ \hline \end{array}$
	$\begin{gathered} \mathrm{L} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \dot{V}_{\mathrm{A}} \\ & \mathrm{I} / \mathrm{s} \end{aligned}$	$\begin{gathered} \dot{V}_{A} \\ \mathrm{~m}^{3} / \mathrm{h} \end{gathered}$	$\begin{gathered} \mathrm{L}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L}_{2} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{L}_{3} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \varnothing D \\ & \mathrm{~mm} \end{aligned}$		
250	1200	85-235	300-850	446	468	600	199	3	15
	1500	110-300	400-1100	556	578	750	223	3	19
	1800	125-360	450-1300	626	648	900	223	4	23
500	1200	195-500	700-1800	626	648	600	279	3	36
	1500	250-625	900-2250	796	818	750	314	3	45
	1800	300-750	1100-2700	896	918	900	354	4	54

Size	Dimensions in mm										
	B	B1	B2	C	C1	C_{2}	C_{3}	H	H_{1}	H_{2}	T
250	250	134	180	156	32	125	178	250	55	275	40
500	500	280	430	220	50	195	242	500	116	525	60

Figure 2: Semi-trapezoidal displacement outlet - Dimensions

Trapezoidal / Semi-trapezoidal displacement outlet

Figure 3: Trapezoidal displacement outlet Jet dispersion made visible with smoke tracer

Figure 4: Semi-trapezoidal displacement outlet in a test room of the automotive industry

Figure 5: Trapezoidal displacement outlets below the supply air duct in a weaving mill

Mode of operation

The perforated plate generates low-turbulence air jets that discharge horizontally to vertically downwards owing to the trapezoidal shape of the housing. Depending on the displacement outlet length, 2 to 4 twist outlets 9 are built into the perforated plates of the 290 and 500 mm wide trapezoidal displacement outlets as well as into the perforated plate of the semi-trapezoidal displacement outlet. These twist outlets generate a high-momentum air flow that induces the supply air from the surrounding perforated plate surface. The result is a very stable total air flow with a coverage of approx. 8 m .

The 140 mm wide trapezoidal displacement outlet is designed for a smaller coverage of 2 to 3 m . Here, the necessary jet stability is obtained without adding twist outlets.

Figure 6: Air jet pattern of trapezoidal / semi-trapezoidal displacement outlet

Trapezoidal / Semi-trapezoidal displacement outlet

As shown in Figure 6, dust and pollutants are displaced downwards to the return air openings and extracted from the room. This largely prevents air upflow, which considerably reduces the time solid particles remain in the indoor air. Tests made in spinning mills have proved that dust concentration in air flow generated by trapezoidal displacement outlets is 50% less than is in indoor air when conventional air outlets are used. It must be noted that even indoor air conditions (room temperature and relative humidity) are obtained in both the machinery area and the occupied zone.

Placement and connection

1. Trapezoidal displacement outlet

The trapezoidal displacement outlet can be placed free-hanging or flush with the ceiling. The 140 mm wide outlet can also be installed along or very close to a wall. In this case the inside of the perforated segment facing the wall is to be covered. As a result, the air flow rate decreases by 50%. Figure 7 shows the different installation options.

Placement:

Flush with ceiling
Air supply from ceiling plenum or via connection to supply air duct

In front of a wall ${ }^{1)}$
Only for 140 mm wide outlet; recommended distance to wall $\geq 100 \mathrm{~mm}$

2. Semi-trapezoidal displacement outlet

As a rule, the semi-trapezoidal displacement outlet is placed along a wall or on either side of an assembly line. There are several ways to connect the outlet to the supply air duct as is shown in Figure 8.
Placement: Free-hanging in front of a wall or pillar

Figure 8: Semi-trapezoidal displacement outlet Placement and connection types

[^0]Figure 7: Trapezoidal displacement outlet - Placement and connection types

Perforated segment $\rightarrow \leftrightarrows \geq 100$
covered inside

Trapezoidal / Semi-trapezoidal displacement outlet

Selection and layout

Typical applications for the trapezoidal or semi-trapezoidal displacement outlet are textile factories such as carding, spinning and weaving mills, different areas in car works, e.g. painting shops and assembly lines, as well as printing shops.

The main technical data is shown in the following table and graphs.

Technical data	Trapezoidal displacement outlet	Semitrapezoidal displacement outlet
Air outlet width: mm mm mm	$\begin{aligned} & 140 \\ & 290 \\ & 500 \end{aligned}$	$\begin{array}{r} 250 \\ 500 \\ \hline \end{array}$
Air outlet length: $\begin{array}{lc} \\ & \mathrm{mm} \\ & \mathrm{mm} \\ \mathrm{mm} \\ & \mathrm{mm}\end{array}$	$\begin{array}{r} 800 \\ 1250 \\ 1600 \\ 1800 \end{array}$	$\begin{aligned} & 1200 \\ & 1500 \\ & 1800 \\ & \hline \end{aligned}$
Volume flow rate in $1 /(\mathrm{s} \cdot \mathrm{m})$ for width of 140 mm 250 mm 290 mm 500 mm	$\begin{gathered} 85 \text { to } 210 \\ \text { - } \\ 195 \text { to } 415 \\ 335 \text { to } 695 \\ \hline \end{gathered}$	$\begin{gathered} 70 \text { to } 195 \\ \text { - } \\ 165 \text { to } 415 \end{gathered}$
Volume flow rate in $\mathrm{m}^{3} /(\mathrm{h} \cdot \mathrm{m})$ for width of 140 mm 250 mm 290 mm 500 mm	$\left.\begin{array}{\|r} 300 \text { to } \\ -750 \\ 700 \text { to } 1500 \\ 1200 \text { to } 2500 \end{array} \right\rvert\,$	$\begin{aligned} & \text { 250 to } 700 \\ & 600 \text { to } 1500 \end{aligned}$
Discharge height:	3 to 4	
Duct spacing for air outlet width of - 140 mm (trapezoidal): - 290 and 500 mm (trapezoidal): - 250 and 500 mm (semi-trapezoidal):	$\begin{aligned} & 3.5 \text { to } \begin{array}{r} 6 \\ 7 \\ 7 \\ 7 \\ 7 \end{array} \text { to } 10 \\ & \hline \end{aligned}$	
Coverage zone of supply air jets:	2 to 8	2 to 3
Temperature difference supply air-indoor air - for width 140: - for widths 290 and 500 :	$\begin{aligned} & -3 \text { to }-6 \\ & -3 \text { to }-8 \\ & \hline \end{aligned}$	$-3 \text { to }-6$
Material - Outlet housing and perforated plate - Twist outlets	galvanized sheet metal polystyrene	

Figure 9: Semi-trapezoidal displacement outlet of size 500 in a production facility

1) The graph values apply for damper "open"

Sound power level and pressure loss ${ }^{1)}$

Trapezoidal / Semi-trapezoidal displacement outlet

Figure 10: Trapezoidal displacement outlet of nominal width 140

Figure 11: Trapezoidal displacement outlet of nominal width 290 or 500

Figure 12: Semi-trapezoidal displacement outlet of size 250 or 500

Type code
Trapezoidal displacement outlet VA - T- \qquad
 Function/Kind $\mathrm{T}=$ trapezoidal
Nominal width: 140, 290 and 500 mm
Nominal length: $800,1250,1600$ and 1800 mm
Placement
F = free-hanging
D = flush with ceiling
W = along a wall

Example:

Trapezoidal displacement outlet, 140 mm in width, 1250 mm in length, free-hanging from ceiling.

Type: VA - T - 140 / 1250 - F

Connection type

A1 = Rectangular connection spigot for insertion into a supply air duct (standard)
A2 $=$ Rectangular connection spigot with insertion frame for connection to supply air duct (spigot at the top)
A3 $=$ Rectangular connection spigot with connection frame to fit 20 mm corner flange
$\mathrm{R}=$ Connection to circular duct (with 2 spigots whose nominal diameter depends on outlet size)

Connection arrangement

O = Connection at the top (standard)
$\mathrm{H}=$ Connection at the rear

Example:

Semi-trapezoidal displacement outlet, size 250, nominal length 1200 mm , connection to spiral seam duct, connection spigot at the top.

$$
\text { Type: VA - TH - } 250 \text { / } 1200-\mathrm{R}-0
$$

Trapezoidal／Semi－trapezoidal displacement outlet

Features

■ Low－turbulence displacement flow with air discharge at a downward incline
－Well suited for spaces where heavy pollutants are emitted
－For applications with permanent cooling
－Discharge height： 3 to 4 m
－Temperature difference between supply air and indoor air：-3 to -6 K or -3 to -8 K
－Even，constant indoor air temperature in both the machinery area and the occupied zone
－Supply air connection for
－trapezoidal outlet：rectangular spigot at the top
－semi－trapezoidal outlet：one rectangular or two circular spigots placed at the top or at the rear
－Volume flow rate range of
－trapezoidal outlet： $85-695 \mathrm{l} /(\mathrm{s} \cdot \mathrm{m})$

$$
\left[300-2500 \mathrm{~m}^{3} /(\mathrm{h} \cdot \mathrm{~m})\right]
$$

－semi－trapezoidal outlet： $70-415 \mathrm{I} /(\mathrm{s} \cdot \mathrm{m})$

$$
\left[250-1500 \mathrm{~m}^{3} /(\mathrm{h} \cdot \mathrm{~m})\right]
$$

■ Available in several widths and lengths
－Coverage zone of supply air jets： 2 to 8 m

Tender text

－．．．．units

Trapezoidal displacement outlet

with little induction effect for minimum mixing of supply air with indoor air so as to achieve optimum displace－ ment of dust particles and pollutants from the occupied zone，air downflow，consisting of：
\square Nominal width 140
Housing with trapezoidal discharge surface made of perforated sheet metal to be pulled down for cleaning， and top rectangular spigot for duct connection，with flange and built－in volume flow damper adjustable from outside．
Placement：\square free－hanging．flush with ceiling． along a wall．

ㅁ Nominal widths 290 and 500
Housing with trapezoidal discharge surface made of perforated sheet metal and built－in twist outlets－ discharge surface to be pulled down for cleaning－， top rectangular spigot for duct connection with built－in volume flow damper adjustable from outside， and insertion frame．
Placement：
\square free－hanging．flush with ceiling．

Technical data：

Volume flow rate： $\mathrm{l} / \mathrm{s}\left(\mathrm{m}^{3} / \mathrm{h}\right)$
Sound power level：
$\mathrm{dB}(\mathrm{A})$ ref． $10^{-12} \mathrm{~W}$
Pressure loss： Pa
Material：Housing and perforated plate made of galvanized sheet metal
\square Twist outlets ${ }^{1}$ ）made of polystyrene \square painted to RAL \qquad

Dimensions：Nominal width：．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．mm
Nominal length：．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．mm
Make：
KRANTZ KOMPONENTEN
Type： VA－T－ \qquad
\qquad －
\qquad

Semi－trapezoidal displacement outlet

with little induction effect for minimum mixing of supply air with indoor air so as to achieve optimum displace－ ment of dust particles and pollutants from the occupied zone，air downflow，consisting of：
housing with semi－trapezoidal discharge surface made of perforated sheet metal，built－in twist outlets，and connection spigot．
Spigot arrangementat the top．\square at the rear．
Spigot design
\square rectangular
．smooth
\square with insertion frame ${ }^{2)}$
\square with connection frame to fit 20 mm corner flanges
\square circular， 2 pieces，to fit spiral seam or flexible duct．

Technical data：

Volume flow rate： l／s（m³／h）
Sound power level：
dB（A）ref． $10^{-12} \mathrm{~W}$
Pressure loss： Pa
Material：Housing and perforated plate made of galvanized sheet metal
Twist outlets made of polystyrene
\square painted to RAL \qquad

Size：	$\square 250 \mathrm{~mm}$
Nominal length：	$\square 500 \mathrm{~mm}$
Make：	KRA．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Type：	KRANTZ KOMPONENTEN

－Subject to technical alteration－
1）Only for nominal widths 290 and 500
2）For connection spigot placed at the top

Caverion Deutschland GmbH

Krantz Komponenten
Uersfeld 24， 52072 Aachen，Germany
Phone：＋49 241 441－1，Fax：＋49 241 441－555
info＠krantz．de，www．krantz．de

Trapezoidal displacement outlet Semi-trapezoidal displacement outlet

Trapezoidal displacement outlet

Semi-trapezoidal displacement outlet

Type code

Size

	VA-T	VA-TH
$140=$ Size 140	\bullet	
$250=$ Size 250		\bullet
$290=$ Size 290	\bullet	
$500=$ Size 500	\bullet	\bullet

Nominal length

	VA-T	VA-TH
$800=$ Nominal length 800	\bullet	
$1200=$ Nominal length 1200		\bullet
$1250=$ Nominal length 1250	\bullet	
$1600=$ Nominal length 1600	\bullet	
$1500=$ Nominal length 1500		\bullet
$1800=$ Nominal length 1800	\bullet	\bullet

Connection type (VA-TH only)
A1 = Rectangular connection spigot for insertion into a supply air duct
A2 = Rectangular connection spigot with frame for duct mounting (spigot on top)
A3 $=$ Rectangular connection spigot to fit corner flange 20 mm
RU $=$ Circular duct connection with 2 round spigots
Position of connection spigot (VA-TH only)
$0=$ Connection spigot on top
H = Connection spigot at the rear

Surface finish

galv = galvanized
.... = Face painted to RAL
Accessories(VA-T-140 only)
C = Cover plate for wall mounting

Function / Kind

$\mathrm{T}=$ Trapezoidal displacement outlet
TH = Semi-trapezoidal displacement outlet
Subject to technical alteration.

Applied system solutions

Caverion Deutschland GmbH

Krantz Komponenten
Uersfeld 24, 52072 Aachen, Germany
Phone: +49 241 441-1, Fax: +49 241 441-555
info@krantz.de, www.krantz.de

[^0]: 1) With halved air flow rate; alternatively select semi-trapezoidal displacement outlet
