

Technical Selection

Puridrall and Puri-inlet Air outlets for clean rooms

Applied system solutions

DS 4087 E 07.2005

Preliminary remarks

Cleanroom classes 6 to 8 to DIN EN ISO 14644-1 (VDI 2083) or 1 000 to 100 000 to US Federal Standard 209 as well as C and D to EG-GMP are obtained using turbulent mixing-air flow. This is a mode of ventilation in which clean supply air entering the room is mixed - as intensively as possible - with the indoor air. The key effect on the degree of cleanliness is the dilution of air pollutants emitted in the room. The more even the dilution, the higher the degree of cleanliness reached.

This calls for air outlets that achieve intensive admixture of supply air and indoor air due to their induction effect. For this, KRANTZ KOMPONENTEN uses its own tried and tested twist outlets. Supply air discharge is horizontal and radial. The strong induction effect of the air jets causes a turbulent, diffuse mixing-air flow with constant, low indoor air velocity. This reliably prevents zones of higher particle concentration.

The Puridrall is made up of a twist outlet and a HEPA filter cell accommodated in a joint housing.

To filter return air directly at the collection point in clean rooms KRANTZ KOMPONENTEN provides the Puri-inlet. This has the same shape and quality as the Puridrall. Instead of a twist outlet element, the Puri-inlet has a perforated plate for return air intake.

Applications

Both air outlets can be used in all areas of industry, research and medicine where air cleanliness to the abovementioned cleanliness classes is required (see chart on page 9).

Puridrall and Puri-inlet are well suited for refitting existing HVAC systems in clean rooms.

Construction design

Puridrall

Puridrall is available in 7 sizes, for a volume flow rate range of 20 to 450 l/s (75 to 1600 m³/h). Its essential components are the housing 1 with built-in HEPA filter cell 2 and twist outlet 3.

Attractive slim ceiling twist outlets are used for all Puridrall sizes.

The twist outlet is detachable downwards. Two different constructions are available to enable the HEPA filter cell replacement:

U construction: Filter cell replacement from below, from clean room.

O construction: Filter cell replacement from above, from false ceiling.

After releasing the contact pressure fixture **4** the filter cell **2** can be easily removed. In the U construction, the twist outlet or in the O construction the upper end-plate **17** must be dismantled.

The sealing frame **5** for the filter cell is available with a test groove **5b** (DIN 1946, Part 4) for dry sealing. The tightness test with the U construction is conducted from below with the twist outlet removed, and with the O construction from above, with the endplate detached at measurement point **6**.

Instead of a dry sealing, the filter cells for housing sizes 1 to 6 are available with fluid sealing **2c**. They have a groove with fluid filling in the segment of the cell frame. In this option, the sealing frame **5** is fitted with a surrounding knife edge **5a** which immerses in the fluid filling to make an airtight connection.

The air-side connection can be made either via a lateral, rectangular connection spigot **8** with a connection flange, or from above with a circular connection spigot. An airtight shutoff damper **9** with either an electric or pneumatic servomotor **10** can be built into the connection spigot. Depending on the housing construction (U or O), the servomotor is accessible from below or above. Strap fasteners **14** are used for ceiling attachment.

Puri-inlet

The construction design is the same as for Puridrall but a perforated plate is used instead of the twist outlet element.

Materials and types

Housing, connection spigot, sealing frame and knife edge made of galvanized sheet metal, coated on both sides with disinfectant-proof epoxy polyester resin, colour to RAL 7035 (light grey). Contact pressure fixture, holder for crossbeam and test pipe for tight fit and filter pressure made of stainless steel.

Twist outlet and perforated plate made of galvanized sheet metal, coating with disinfectant-proof epoxy polyester resin, colour to RAL 9010 (pure white) or as required.

Class H13 or H14 HEPA filter cell (to DIN EN 1822-1), filter cell frame made of aluminium,

Filter cell frame with handles on the extraction side for filter cell replacement from above.

Cell frame with polydimethyl siloxene fluid sealing Properties: liquid, colourless, odourless Density: $0.97 \text{ g/cm}^3 \text{ at } 20^{\circ}\text{C}$ Thermal decomposition: $\geq 200^{\circ}\text{C}$

All parts are made of rustproof material or protected from corrosion, and are disinfectant-resistant.

Dimensions

	Housing	ousing Twist Filter cell Volume flow				flow ra	v rate			Pressure loss ¹⁾				Dimensions								Total	
	size	outlet						Filter cell ² Total ³⁾										weight					
		(Type	L x B x H ⁴⁾	\dot{V}_{max}	\dot{V}_{max}	\dot{V}_{min}	\dot{V}_{min}	V _{nenn}	\dot{V}_{nenn}	u _{nenn}	$\Delta p_{nom}^{4)}$	$\Delta \mathrm{p}_{\mathrm{tnom}}$	ΠA	ШΒ	□C	D	ΠE	L	F	Ø-G	K	М	approx.
		RA-N) ⁶⁾	mm	l/s	m ³ /h	l/s	m ³ /h	l/s	m ³ /h	m/s	Pa	Pa	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
	PD - 1	DN 180	305 x 305 x 66	55	200	20	75	40	150	0.45	160	185	330	380	390	80	363	320	13	149	40	292	12
_	PD - 2	DN 250	457 x 457 x 66	110	400	38	140	95	340	0.45	160	180	482	532	542	80	515	320	13	199	40	444	18
Puridra	PD - 3	DN 315	457 x 457 x 66	125	450	55	200	95	340	0.45	160	175	482	532	542	80	515	320	13	199	40	444	18
	PD - 4	DN 315	545 x 545 x 66	165	600	55	200	135	480	0.45	160	190	570	610	620	80	600	320	13	224	60	532	24
	PD - 5	DN 355	610 x 610 x 66	195	700	85	300	170	605	0.45	155	170	635	685	695	80	668	320	13	249	60	597	27
	PD - 6	DN 400	610 x 610 x 90	250	900	110	400	225	805	0.60	155	170	635	685	695	80	668	320	13	279	60	597	28
	PD - 7	DN 500	610 x 610 x 110	445	1600	195	700	335	1205	0.90	155	175	635	685	695	160	668	435	53	399	80	597	37
Ţ	PE - 1	—	305 x 305 x 66	55	200	_		40	150	0.45	160	180	330	380	390	80	363	320	12	149	40	292	11.5
inle	PE - 2	—	457 x 457 x 66	125	450	_	_	95	340	0.45	160	175	482	532	542	80	515	320	13	199	40	444	17.5
uri-	PE - 4	—	545 x 545 x 66	165	600	_	_	135	480	0.45	160	170	570	610	620	80	600	320	13	224	60	532	23.5
	PE - 5	_	610 x 610 x 90	280	1000	_	_	225	805	0.60	155	165	635	685	695	80	668	320	13	249	60	597	26
	PE - 7	_	610 x 610 x 110	555	2000	_	—	335	1205	0.90	155	170	635	685	695	160	668	435	53	399	80	597	36

1) Initial pressure loss Δp -start (class H14 filter cell uncontaminated) at nominal volume flow rate \dot{V}_{nom}

2) Recommendation: Filter replacement at Δp -end = 2 x Δp -start from chart on page 8, depending on selected volume flow rate 3) Puridrall or Puri-inlet with filter cell 5) Shown for the option:

Filter cell replacement from below 6) Other outlet types available on request

 Height H and pressure loss Δp_{nom} apply for our standard filter cells. Other heights and pressure losses apply for other filter cell makes and for filter cells with fluid sealing.

Dimensions

O construction: Filter cell replacement from above

Filter cell replacement from below

Puridrall with rectangular connection spigot

Air outlet removed, filter cell and contact pressure fixture visible

Filter cell replacement from above

Puridrall with circular connection spigot in the detachable cover plate

Cover plate removed, filter cell and contact presssure fixture visible

Nomogram PD-1 to PD-4

 \dot{V}_{Sp} = Specific air volume flow rate per m² of room area

7 VA selected = 120 l/s and hence

225 Pa

 \approx

8 Z

9 L_{WA}10 Δpt

11 t_{min}

= 42 units from (①:⑦)

 \approx 2.4 m (Chart page 7)

 \approx 33 dB(A) ref. 10⁻¹² W

5

Nomogram PD-5 to PD-7

Total pressure loss and sound power level for Puridrall

Puridrall housing size	drall Outlet g size volume flow rate		Total pressure loss	Sound power level L _W in dB ref. 10 ⁻¹² W									
	V V		Δp_t	L _{WA}	Octave band centre frequency in Hz								
	l/s	m ³ /h	Pa	dB(A)	63	125	250	500	1000	2000	4000		
PD - 1	22 33 44 55	80 120 160 200	93 145 200 250	14 23 29 34	17 26 32 37	21 30 36 41	16 25 31 36	14 23 29 34		— — 16 21	 		
PD - 2	55 70 85 110	200 250 300 400	105 135 160 220	18 23 27 34	27 32 36 43	28 33 37 44	20 25 29 36	14 19 23 30	— 14 18 25	— 17 24	— — 16 23		
PD - 3	85 97 110 125	300 350 400 450	153 180 210 232	26 29 32 34	36 40 43 45	37 40 43 46	24 28 31 33	18 22 25 27	19 23 26 28	15 18 21 24	15 19 22 24		
PD - 4	85 110 140 165	300 400 500 600	112 152 195 235	24 31 35 39	29 35 40 44	32 38 43 47	22 28 33 37	17 23 28 32	16 23 28 31	17 23 28 32	17 23 28 32		
PD - 5	110 140 165 195	400 500 600 700	110 140 170 200	18 25 30 34	31 38 43 47	31 37 42 47	19 25 30 35			— — — 18	— — — 16		
PD - 6	165 195 220 250	600 700 800 900	125 148 170 190	28 32 36 39	35 39 43 46	35 39 43 46	30 34 38 41	25 29 33 36	23 27 31 34	17 21 25 28	— 17 20		
PD - 7	280 335 390 445	1000 1200 1400 1600	141 174 208 240	27 32 37 41	35 40 45 49	36 41 46 50	31 36 41 45	25 30 35 39	18 23 28 32	— — 19 23	— — 17		

Minimum Puridrall spacing

1. Example Puridrall PD-3 (see page 5)							
Air outlet volume flow rate	Va	=	120 l/s				
Specific volume flow rate	Vsp	, =	20.4 l/(s \cdot m ²) ¹⁾				
Min. Puridrall spacing	t _{mir}	n ≈	2.4 m ²⁾				

2. Example Puridrall PD-7 (see page 6)						
Air outlet volume flow rate	Va	=	400 l/s			
Specific volume flow rate	Vsp	, =	23.4 l/(s \cdot m ²) ¹⁾			
Min. Puridrall spacing	t _{min}	~	4.15 m ²⁾			

1) Related to floor area

2) When the Puridrall outlets are unevenly spaced the t_{min} selected can be max. 25% smaller

Pressure loss of class H14¹⁾ HEPA filter

Puri-inlet	Volume	flow rate	Total pressure loss		So	und powe	r level L _W	in dB ref.				
housing size	Ý	Ý	Δp_t	L _{WA} Octave band centre frequency in Hz								
	l/s	m ³ /h	Ра	dB(A)	63	125	250	500	1000	2000	4000	
PE - 1	28 40 55	100 150 200	120 182 245	16 24 30	20 28 34	26 34 40	16 24 30	 21 27	 17 23	 17	 	
PE - 2	55 85 125	200 300 450	105 155 235	16 24 32	20 28 36	26 34 42	16 24 32	 21 29	 17 25	 19		
PE - 4	110 140 165	400 500 600	145 180 220	25 29 33	29 33 37	35 39 43	25 29 33	22 26 30	18 22 26	 16 20	 	
PE - 5	165 220 280	600 800 1000	123 165 205	29 35 39	37 43 47	41 47 51	33 39 43	23 29 33	20 26 30	 20 24	 15	
PE - 7	280 415 555	1000 1500 2000	140 210 280	39 47 52	48 56 61	52 60 65	43 51 56	32 40 45	28 36 41	24 32 37	15 23 28	

Cleanliness classes to DIN EN ISO 14644-1, US Federal Standard 209 and EG-GMP Guideline

Type code

Filter cell replacement:

U = from below O = from above

Connection spigot:

- E = Square, lateral
- R = Circular, above

EE = Square, lateral with electric spring-return motor

EP = Square, lateral with pneumatic servomotor

Sealing frame:

T = Dry sealing; F = Fluid sealing

Filter class to DIN EN 1822-1: H13 or H14

Example:

Puridrall, housing size PD-4, filter cell replacement from below, with lateral square connection spigot, fluid sealing, filter class H14:

Type PD - 4 - U - E - F - H14

Puri-inlet, housing size PE-5, filter cell replacement from above, with circular connection spigot, dry sealing, filter class H13:

Type PE - 5 - O - R - T - H13

Features

- For cleanliness classes 6 to 8 to DIN EN ISO 14644-1 (VDI 2083) or 1 000 to 100 000 to US Federal Standard 209 as well as C and D to EG-GMP
- As **Puridrall** for air supply with twist outlet (Type RA-N) for horizontal, radial air discharge and for generating high-induction, turbulent mixing-air flow
- Even dilution of pollutants emitted in room
- As **Puri-inlet** for air filtering directly at the collection point, with perforated plate for air intake
- Air-tight housing to DIN 25414; max. leakage volume flow rate well below 0.003% of nominal volume flow rate at a pressure differential of 2000 Pa
- Optional construction for filter cell replacement from below (from room) or from above (from plenum)
- HEPA filter cell, type tested to DIN EN 1822-1, filter class H13 or H14 (optional)
- Filter cell frame with dry sealing or fluid sealing (for housing sizes 1 to 6)
- Filter cell frame with handles on the extraction side for filter cell replacement from above
- Filter sealing frame for dry sealing with connection for pressure differential measurement, particle sampling and leakage testing to DIN 1946, Part 4
- Filter sealing frame for fluid sealing (gel seal) with knife edge, pressure differential measurement, particle sampling; leakage testing not required
- Compact construction with easy accessibility for disinfection and maintenance work
- Low pressure loss and low sound power level
- Air connection lateral or from above, lateral also with air-tight shutoff damper (optional)
- With electric or pneumatic servomotor (optional)
- All parts rustproof or protected against corrosion
- Well suited for refitting existing HVAC systems in clean rooms

Tender text

..... units

□ Puridrall, air outlet for clean rooms, with twist outlet for turbulent mixing-air flow and strong induction effect between supply air and indoor air, easily detachable from room,

suitable for clean rooms of classes 6 to 8 to DIN EN ISO 14644-1 or 1 000 to 100 000 to US Federal Standard 209 as well as C and D to EG-GMP,

 \Box Puri-inlet, for filtering return air from clean rooms directly at the collection point, with perforated plate for air intake,

filter cell replacement \square from below \square from above

also consisting of:

air-tight housing with contact pressure fixture for the filter cell and

 \square square connection spigot, lateral, \square with built-in air-tight shutoff damper.

Damper actuation by

- □ electric spring-return motor,
- D pneumatic servomotor,

Damper de-energized \square "open". \square "closed".

□ Circular connection spigot, above.

□ Sealing frame for dry sealing with surrounding test groove for leakage test to DIN 1946, Part 4.

□ Sealing frame for fluid sealing (gel seal), with surrounding knife edge.

Measurement point for pressure differential as well as particle sampling on the untreated air side.

HEPA filter cell, cell frame including

- □ dry sealing.
- fluid sealing. 1)

Technical data:

Volume flow rate:	l/s (m ³ /h)
Filter class:	🗆 H13
	\Box H14 ¹⁾
Perm. sound power level:	dB(A) ref. 10 ⁻¹² W
Total pressure loss with uncontaminated filter cell	Pa
Materials: Housing, twist outlet, perforated plate, contact pressure frame and sealing frame:	Galvanized sheet metal
Filter cell frame:	Aluminium
Surface protection: Housing, twist outlet	
and contact pressure frame	: Epoxy polyester resin coating, disinfectant-proof
Colour	
 housing: square visible surface 	RAL 7035 (light grey)
incl. air outlet / inlet:	RAL 9010 (pure white) or RAL
Dimensions: Housing LxWxH:	mm x mm x mm
Filter cell LxWxH:	mm x mm x mm
Weight with filter cell:	kg
Make:	KRANTZ KOMPONENTEN
Type:	

Subject to technical alterations!

 Available for sizes 1-6 and size up to 1400 m³/h; size 7 > 1400 m³/h corresponds to class H13

Caverion Deutschland GmbH

Krantz Komponenten Uersfeld 24, 52072 Aachen, Deutschland Tel.: +49 241 441-1, Fax: +49 241 441-555 info@krantz.de, www.krantz.de